A Gaussian Attractor Network for Memory and Recognition with Experience-Dependent Learning

نویسندگان

  • Xiaolin Hu
  • Bo Zhang
چکیده

Attractor networks are widely believed to underlie the memory systems of animals across different species. Existing models have succeeded in qualitatively modeling properties of attractor dynamics, but their computational abilities often suffer from poor representations for realistic complex patterns, spurious attractors, low storage capacity, and difficulty in identifying attractive fields of attractors. We propose a simple two-layer architecture, gaussian attractor network, which has no spurious attractors if patterns to be stored are uncorrelated and can store as many patterns as the number of neurons in the output layer. Meanwhile the attractive fields can be precisely quantified and manipulated. Equipped with experience-dependent unsupervised learning strategies, the network can exhibit both discrete and continuous attractor dynamics. A testable prediction based on numerical simulations is that there exist neurons in the brain that can discriminate two similar stimuli at first but cannot after extensive exposure to physically intermediate stimuli. Inspired by this network, we found that adding some local feedbacks to a well-known hierarchical visual recognition model, HMAX, can enable the model to reproduce some recent experimental results related to high-level visual perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه توانایی یادگیری و حافظه در افراد وابسته به مت ‌آمفتامین با افراد وابسته به اوپیوئید و سالم

Objective: The present study aimed at comparing the learning and memory ability between methamphetamine- ant opiate-dependent patients and healthy people. Method: A causal-comparative research method was employed in this study. The statistical population of the study included the men with methamphetamine and opioid dependence and healthy men in Tehran. The sample consisted of 20 men with metham...

متن کامل

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Attractor Networks for Shape Recognition

We describe a system of thousands of binary perceptrons with coarse-oriented edges as input that is able to recognize shapes, even in a context with hundreds of classes. The perceptrons have randomized feedforward connections from the input layer and form a recurrent network among themselves. Each class is represented by a prelearned attractor (serving as an associative hook) in the recurrent n...

متن کامل

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2010